News

Accelerating forage breeding to boost livestock productivity


TRY IT NOW

Sign up online today & collaborate

or click here to find out more

Accelerating forage breeding to boost livestock productivity

 

Date: 24/08/2015

The Genome Analysis Centre (TGAC), with partners in the UK, Colombia and Kenya bring together their leading expertise in forage breeding for animal nutrition, cutting-edge genomics and phenomics technologies to accelerate the improvement of Brachiaria, a vital livestock feed crop in central Africa and Latin America.

More than 80 per cent of the world’s agricultural land is for grazing to support the ever increasing demand for meat and milk for an expanding and growing urban population, while boosting the income of rural families. The scarcity of grass feed is a worrying constraint standing in the way of this livestock productivity.

Some Brachiaria species have been cultivated as forage grasses, providing nutrition for ruminants across the globe. As well as nutrition, the grasses have desirable genetic characteristics linked to drought and pest-resistance and adaptation to poor and acidic soils. Over the past 25 years, several African species of Brachiaria have been used commercially as forages in the tropics; the most widely sown forage plant in tropical America.

With its combined high nutritional value and stress resistant properties, the Brachiaria breeding programme at CIAT is crossing different species to produce new varieties with superior traits. A particular Brachiaria species, B. decumbens, grants resistance to aluminium, which has a high concentration in acid soils. Most low-income livestock keepers live in tropical grasslands in countries in central Africa with great grazing potential, but are vulnerable due to the growing problem of increasing acid soils and longer extreme weather seasons.

TGAC is working to identify high aluminium-resistant genes and chromosome regions in the Brachiaria genome, contributing to the international breeding programmes developing the new generation of forage crops. This genomic approach to forage breeding, will help to produce varieties with high nutritional value under physical stresses, such as low soil fertility.

For more click here

Source: BBSRC

© Catalyst Innovation Portal 2019