Oxford spinout uses nanoparticles to target tough cancers


Sign up online today & collaborate

or click here to find out more

Oxford spinout uses nanoparticles to target tough cancers


Date: 26/08/2015

A new Oxford spinout is planning to commercialise titania nanoparticles capable of generating cancer-killing free oxygen radicals in tandem with radiotherapy to treat patients with malignant tumours.

Xerion Healthcare, set up with the help of Isis Innovation, the University’s technology commercialisation company, has raised £1.5 million from London’s New Wave Ventures and Parkwalk Advisors to continue development and pre-clinical testing of its therapies. Xerion’s technology is based on over seven years of research by Dr Helen Townley at Oxford’s Department of Engineering Sciences

Townley has been investigating how oxygen species generated by the titania nanoparticles can be used to treat cancer tumours. A similar approach is currently used successfully in photodynamic therapy: UV light is used to generate oxygen radicals which kill cancer cells. However, UV light is unable to penetrate into tumours deeper in the body.

Townley and co-inventor Dr Gareth Wakefield found that modified titania nanoparticles generated reactive oxygen species in response to X-ray energy which could penetrate into a tumour deep in the body and kill the cancerous cells.

“The Xerion nanoparticles are completely inert without radiation from radiotherapy,” said Townley. “Essentially we have been able to create a treatment with an ‘on- off- switch’. We can deliver this treatment right at the centre of very dense tumours.

The nanoparticles are just the right size and shape to be taken up by and accumulate in tumour cells. Once inside the tumour they’re likely to stay there, as tumours lack the lymphatic drainage system which removes nanoparticles from the rest of the body.

For more click here

Source: PraxisUnico

© Catalyst Innovation Portal 2019